La résolution des équations du second degré est au programme de toutes les classes de premières.
Cette première série d’exercices vous permettra de vous entraîner à résoudre ces équations par la méthode dites du discriminant.
Chaque exercice se déroule en trois étapes.
- Calcul du discriminant.
- Détermination du nombre de solutions de l’équation.
- Détermination des valeurs exactes et simplifiées des solutions éventuelles de l’équation.
Si Java est installé sur votre ordinateur vous aurez un rendu optimal (voir l’image), sinon cela devrait fonctionner même sur les tablettes qui n’acceptent pas Java.
Vidéo de démonstration
Faire cette première série d’exercices
Il est aisé de voir si l’un des nombres -2, -1, 0, 1 ou 2 est solution d’une équation du second degré donnée.
On parle alors de racine ou solution évidente.
La série d’exercices suivante vous propose de résoudre des équations du second degré qui ont une solution évidente.
Cette série d’exercices peut être utilisée de la seconde à la terminale.
Chaque exercice se déroule en quatre étapes :
- Recherche de la solution évidente.
- Factorisation.
- Détermination du nombre de solutions de l’équation.
- Éventuellement détermination de la deuxième solution.
Vidéo de cette série d’exercices
Faire cette deuxième série d’exercices